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Spin correlation in aromatic molecular systems containing
organic radicals has recently captured the spotlight in the field of
spin chemistry.=7 To achieve a ferromagnetic interaction between
the radicals inzz-conjugated molecular systems, the molecular
topology is widely adopted into their molecular designn this
approach, degenerated singly occupied molecular orbitals (SOMOSs)
determined by the topology successfully provide various high-spin
molecular systems0n the other hand, direct exchange interaction
between sterically orthogonad-radicals, which is considered to
be an alternative mechanism for spin alignmenés not achieved
the high-spin ground state because of the difficulty of obtaining
the conditions needed to realize the perfect orthogonal structure of
aromatic oligomers. As a representative example of the latter
approach, polyt-radical anion)s of poly-9,10-anthrylenes showed
a thermally excited character in the high-spin sfate.

Recently, our group reported unique high-spin states of pely(
radical cation)s of directlynese-meselinked porphyrin array$®
For a bisg-radical cation) of dimelL, the temperature dependence
of the ESR signal intensity of triplet species showed an anomalous
feature, that is, an abrupt increase in the triplet signal over 120 K
whereas the intensity change under 120 K was regarded as
summation of plural components of a thermally excited state. Such
an anormalous behavior @ over 120 K is due to a degeneracy
or crossover between singlet and triplet states in the relatively high-
temperature region, where a motion aroundrttese-mesdinkage
is activated. These results suggest that the singligiet energy
gap of12is close to the limiting conditions needed to realize the
high-spin ground state. With this in mind, we developed an
improved model of directly linked bisporphyrin, Zn@$,10,15,20-
tetrakis(2,4,6-trimethylphenyl)-2-(10,15,20-tris(3,5tdit-butyl-
phenyl)porphyrin-5-yl)porphyring), and investigated the magnetic
property of its bisf-radical cation). In this dimeg, the meso-
mesdinkage of dimerl was replaced with enese-f3 linkage!'13
Therefore, the overlap integral between neighboring SOMQ3'of
was expected to be smaller than that18f* since the highest
occupied molecular orbital (HOMO) of zinc tetraarylporphyrin is
the Ap, orbital, which has large coefficients at theesocarbons
but not at thes carbons. Furthermore, the torsional angle between
neighboringz-planes of dimer2 was kept at nearly 30by the
steric hindrance of enesemesityl group neighboring theesoe-/3
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Figure 1. (a,b) In situ absorption spectral changes due to the progress of
the oxidation ofmese-£ dimer 2 with NaAuCl;:2H,0 in chloroform at
room temperature. (c) ESR spectrum of the monoradical species of dimer
2 at room temperature in chloroform. (d) ESR spectrum of the oxidized
species of dimeP at 10 K in dichloromethane.

linkage. Consequently, a stable triplet state of thesbrsdical
cation)22++, which obeys the Curie law, was successfully observed.
The free base derivative of dim@rwas prepared by the BF
Et,0-catalyzed condensation gfformylatedmesetetramesitylpor-
phyrin, mese(3,5-ditert-butylphenyl)dipyrromethane, and 3,5-di-
tert-butylbenzaldehyde in dry chloroform under a nitrogen atmosphere
according to the reported proceddfé214The two porphyrin rings
were simultaneously metalated with Zn(OAdh chloroform/
methanol?1215The product showed Soret band absorptions split

aby excitonic coupling, indicating the orthogonal alignment of the

neighboring porphyrin ring¥ 18

When a chloroform solution of dim&was treated with a small
amount of NaAuC}2H,O, the lower-energy Soret absorption
around 445 nm, assigned to the coupled dipole moment of the dimer,
decreased with an increase in the longer wavelength transitions
around 650 nm, assigned to an oxidized porphyritadical (Figure
1a). The ESR spectrum of the oxidized species at room temperature
was observed as a single peak with a hyperfine-splitting structure
due to four quasi-equivalent nitrogen atoms (Figure 1c), indicating
the generation of the monwe{radical cation)2**. The splitting
parameterdy = 1.72 G) was more like that of a-radical cation
of Zn(ll) tetramesitylporphyringy = 1.75 G) than that of Zn(ll)
tetrakis(3,5-ditert-butylphenyl)porphyringy = 1.60 G) (Supporting
Information). Therefore, it is suggested that the generatetical
resides mainly at the tetramesitylporphyrin site at the first stage
and hardly penetrates the adjacent tris(3,%edi-butylphenyl)-
porphyrin site because of the small overlap integral between the
orthogonalz-systems.

As the oxidation progressed, a set of fine-structured ESR signals
due to a triplet species was detected at 10 K, along with an increased
monoradical signal (Supporting Information). The triplet signals
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Figure 2. Temperature dependence of triplet ESR signal intensig? of
in chloroform. The solid line is a fitting curve derived from eq 1 wiEst
= 2.1 cal/mol.

increased upon further oxidation while the central monoradical

signal decreased (Figure 1d). At this stage, the visible absorption

that bond-torsion-sensitive exchange interactircaused matrix-
dependent singlettriplet bistability of some biradical®. In these
cases, the magnitude and the sigd afe controlled by the solvent.

In the bisfr-radical cation?**, the rotation of thenese- bond

and the solvation of the cationicradical moieties are considered
to affect the singlettriplet energy gap slightly. The solvent effect
on biradicals has been investigated on the energy levels of a
transient radical ion pair of porphyrirchlorophyll mese- het-
erodimert! Since the spirspin exchange interaction in a radical
ion pair has fundamental significance in the photoinduced electron
transfer?® themese-f diradical2?™ reported here could be a good
object for the examinations of the various spin-carryingystems.
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induced conformational change or the difference in the solvation
itself of the bisfr-radical cation@?**. It was recently documented
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